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A quantum theoretic treatment of double-resonance 
phenomena 

D. F. WALLS 
Department of Physics, University of Auckland, New Zealand 
MS. veceived 24th March 1971 

Abstract. We present a quantum mechanical method capable of providing 
exact non-perturbatire solutions in problems involving the interaction of 
atoms and molecules with the electromagnetic field. T o  illustrate the method 
we consider two examples of double-resonance phenomena. In the first 
example we study the interaction of a near-resonance rf field with the Zeeman 
sublevels of atomic hydrogen. In  the second we study the interaction of a 
three-level molecule with two applied electromagnetic fields. Both the mole- 
cular levels and the electromagnetic field are quantized. Our method 
eliminates the deficiencies of a semiclassical treatment, yet does not require 
the sophisticated computations of the resolvant formalism of Cohen-Tannoudji. 

1. Introduction 
We present a quantum mechanical method of general applicability in describing 

the interaction of atoms with the electromagnetic field. T o  illustrate the method we 
consider two examples of double-resonance phenomena. In  our analysis both the 
atomic levels and the radiation field are quantized. The basic technique involves 
finding two constants of the motion which allows an exact solution of the Schrodinger 
equation to be found. This method was first used by Jaynes and Cummings (1963) 
for the problem of one atom interacting with one electromagnetic field mode and has 
since been applied with success to more general problems (see Tavis and Cummings 
1967, 1968, Walls and Barakat 1970, Scharf 1970, Walls 1970) involving the interaction 
of radiation with matter. 

The  first example we shall study is the interaction of a near-resonance rf field 
with the Zeeman sublevels of atomic hydrogen. Audoin et aZ. (1968) have reported that 
a hyperfine line can be split into a multiplet when an rf field whose frequency corres- 
ponds to the energy difference between the Zeeman sublevels (Andresen 1968) is 
applied. Audoin e t  al. (1969) have shown that the measurement of the intensities of 
these lines provides a very good means of determining the populations of the different 
states. In  particular they studied experimentally the triplet splitting of the Am = 0 
transition of a hydrogen maser used as an amplifier. The results were analysed using 
the theoretical calculations of Pikjus (1968) who used the resolrant method developed 
by Cohen-Tannoudji (1967). A very good agreement between the predicted and 
observed amplitudes of the different lines was obtained. 

We believe that our analysis illustrates the underlying physics to a greater extent 
than the resolvant method. Further, our method does not require the mathematical 
sophistication of the resolvant method, nor does it resort to perturbative techniques. 
The  solution of the nonlinear operator problem is reduced to the diagonalization of a 
3 x 3 matrix. In  this mathematical simplicity lies the potential of this technique for 
solving related problems involving the nonlinear interaction of light with atoms. 

In  the second example of a double-resonance experiment we consider a three-level 
molecule with allowed electric dipole transitions between levels 1 tf 2 and levels 

638 



A quantum theoretic treatment of double-resonance phenomena 639 

2 * 3 but not between levels 1 et 3. In  the presence of a pumping transition 1 -+ 2, 
the absorption of a signal between 2 --f 3 increases. The  first experiment of this 
nature was performed by Autler and Townes (1950) who observed a splitting of a 
microwave absorption line when in the presence of a field which induces transitions 
between the initial and final energy levels of the line and some other level of the mole- 
cule. More recently a similar double-resonance experiment has been used by Macke 
et al. (1969) to study two rotational transitions of an asymmetric top molecule with 
a common level. A semiclassical analysis of this type of double-resonance experi- 
ment has been given by Javan (1957) and Macke et al. (1969). A perturbative 
quantum treatment using the resolvant formalism has been given by Di Giacomo 
and Santucci (1969). In  our fully quantum mechanical treatment an exact non- 
perturbative solution is derived in which spontaneous emission is included. 

2. Interaction of an rf field with the Zeeman levels of hydrogen 

multiplicity F = 1 of the ground state of atomic hydrogen (see figure 1). 
We consider the effect of an rf field of frequency U ,  and amplitude H ,  on the 

Figure 1. Energy levels of a hydrogen atom in the ground state as a function 
of the magnetic field Ho. 

In  very low magnetic fields the three Zeeman sublevels F = 1 may be treated as 
the three levels of a spin 1 henceforth designated by S.  The energy of the three 
Zeeman levels in a dc magnetic field H d c  is then given by the Hamiltonian 

H s p i n  = h%S, (2.1) 
where S ,  is the z component of the spin S and w o  = $yHdc where y is the electron 
gyromagnetic ratio. 

The eigenstates of the spin Hamiltonian are the states IS, S,), explicitly 11, l ) ,  
11, O} and 11, - 1) with energies Awe, 0, -hwo respectively. 

The Hamiltonian for the perturbing rf field of frequency w ,  is 

H,, = kw,a+a (2.2) 

where a, U+ obey the usual boson commutation relations. The  total Hamiltonian for 
the system is 

where H o  the free Hamiltonian is given by 

He = ho,u+a + XwoS ,  (2.4) 
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where we have allowed the rf field to be off-resonance by an amount Aw. 

w y  = w o + A w .  (2.5) 
The interaction Hamiltonian H1 may be written as 

= h K ( U + a ' ) S , .  (2 .6 )  

H I  = h K ( U S +  -kats-)  (2 .7)  

On neglecting highly non-resonant terms, that is, making the rotating-wave approxi- 
mation, this becomes 

where 

are the raising and lowering operators for the three-level system. The  coupling 
constant K = yH,. 

The Heisenberg equations of motion following from the above Hamiltonian are 
nonlinear operator equations. To  circumvent this intractable problem we look for a 
solution of the Schrodinger equation by constructing two constants of the motion. 
We proceed by constructing the following two operators 

Io = kw,a+a + hwoS,  + K 
Il = H,+AAwata-K 

such that 
H = 1 0 ~ 1 1  

(2.9) 
(2.10) 

(2.11) 

and K is an arbitrary constant. 
It is easy to verify the following commutation relations 

[Io, 1111 = [Io, HI = [ID HI = 0. (2.12) 
Thus I ,  and lT1 are constants of the motion. Since they commute with each other a 
representation exists in which the total Hamiltonian is diagonal. We consider the 
following set of basis states with notation IS,, n )  which are all eigenstates of I,: 

$+ = ( l I , n - l ) ,  10,n), I - I , n + I > ) .  (2.13) 

Since we are considering a three-level system this set of states is closed and forms a 
complete set of basis states for the system. We shall attempt to express the eigen- 
states of I ,  as a linear combination of these basis states. The  Schrodinger equation 
takes the following form 

IItk = ??A$ (2.14) 
where 4 is the 3 x 3 matrix 

(2.15) 

where the arbitrary constant K has been chosen K = hnhw. The eigenstates and 
eigenvalues of the system are found by diagonalizing this matrix. The eigenvalues 



A quantum theoretic treatment of double-resonance phenomena 64 1 

are roots of the cubic equation 

X3-A{h~2 +(2n+ ~)K')-K'AW = 0. (2.16) 

This equation has no simple roots hence in equation (2.15) we make the approxi- 
mation (n+ 1)l:' 2: nl:'. This is the only approximation made in the analysis of the 
nonlinear Hamiltonian equations (2.3), (2.4), (2.7).  This approximation is valid for 
large n and thus is expected to be a good approximation for rf fields. The  eigenvalues 
are now found to be 0, -t G where 

G = ( h ~ ' + g ~ ) ~ ' '  

g2 = 2 n 2 .  
and 

The  corresponding eigenstates of the system are 

a =  U* 
where U is the 3 x 3 matrix 

iy 

with U = hw1G and 

1 - U  (1 ;u2) l + u  - - 
2 2 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
i )  is defined by equation (2.13), 

These results are identical to those obtained by Audoin et al. (16) (taking into 
account the different normalization of the coupling constant) calculated using the 
resolvant method. However our method does not involve the computational com- 
plexity of the resolvant method nor does it resort to perturbative calculations. The  
coincidence of our results with those of Audoin et al. (1969) is due to our introduction 
of the approximation (n+ 1)1.2 = n1'2 made in order to present the solutions in 
closed form. 

3. Probability amplitudes for the triplet transitions 
We consider the case where the pumping process has created a population 

difference denoted by p,, p o ,  p - ,  between the unperturbed states. We consider the 
case of sudden passage, that is when the time T taken to apply the Zeeman perturba- 
tion is much less than l / w Z .  The  populations P+, Po and P- of the states $+, do 
and 4-  may then be read directly from equation (2.18). 

1 - U  1 -U' l + u  
P+ = P 1 ( T ) 2 +  P O ( 7 )  + P-(?) 

1-22 1 - U 2  
Po = P I  (,) + POU' + P -  1 ( y )  

(1iU)'  
(1,"") + p - 1  (1J' -- . P -  = p ,  - + P o  - 
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From the known eigenstates and eigenvalues (equations (2.17) and (2.18)) we may 
calculate exactly the probability amplitudes a l ( t ) ,  ao(t) and a-,(t) of the atoms being 
in the states [ l),  10) and I - 1) at time t. The result is the following: 

where a,, ao, and a - ,  are the probability amplitudes of the atoms initially being in 
the states 1 l}, 10) and I - l}. From the above general expression we may write 
down the probability amplitude of the level 10) being occupied at time t. 

Similar expressions for a l ( t )  and a_ , ( t )  may be written down from equation (3.2). 
The level IO} gives rise to the Am = 0 transition. From equation (3.3) we see 

that there are three components with frequencies w,  w G. The ratio of the inten- 
sities of the three lines w + G: w : w - G is seen from equation (3.3) to be 

The intensities of the triplets in the Am = i 1 transitions may be calculated in a 
similar fashion. 

The above technique provides a very precise determination of the resonance 
frequency wg = wo, since we see that on resonance the intensity of the central line 
becomes zero ( A w  = zi = 0). 

4. Interaction of two electromagnetic field modes with a three-level 

We shall now consider a more general double-resonance experiment than described 
in 5 2 and 5 3. We consider the system of a three-level molecule interacting with two 
electromagnetic field modes as shown in figure 2. It is seen that the system studied 
in $ 2  is a special case of the system shown in figure 2 with w ,  = w b ,  
E ,  - E ,  = E 2 -  El and p12 = ~ 2 3 .  The system shown in figure 2 may be described 
by the following Hamiltonian 

system 

H = H,+H, (4.1) 
Ho = Awlcl tcl + Aw2c2+c2 + hw,c,tcz + hw,ata+ hw,b+b ( 4 4  
H I  = hc,(clac2t + c,+a+c,) + h~,(c2bc3+ + c2tb+b3) (4.3) 
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where U ,  b are photon annihilation operators obeying boson commutation relations ; 
c1, c2, c3 are the annihilation operators for the molecular levels obeying fermion 
commutation and anticommutation relations. The  coupling constants K,, Kb are 
proportional to p12, p2,-the matrix elements of the dipole moments between levels 
1 and 2, and 2 and 3 respectively. 

t A W b  - - - - - - - - - - - - €3 

3 

- - - - - - - - - - - 
$ 00, El 

Figure 2. Three-level molecule interacting with two electromagnetic field 
modes. 

We proceed as in 5 2 by constructing the following two operators 

I ,  = h(w, + Awa)cltcl + Kw2cz+c2 + k( w 3  - Aww)c,fc3 + hw,afa+ Aw,btb (4.4) 
I1 = H ~ - ~ A u J , C ~ ~ C ~  + ~ A c o , c ~ + c ~  (4.5) 

where 

such that 
Amo = 0 1 2  - w ,  = w2<3- wb 

M = 10-1,. (4.6) 

(4.7) 

The following commutation relations are easily verified 

[ l o ,  I11 = [Io, H ]  = [II, H )  = 0 .  
Thus I ,  and I ,  are constants of the motion and since they commute a representation 
may be found in which the total Hamiltonian H is diagonal. 

We choose as a set of basis states 

$' = ( 1 , + , ?zb f 1 > 7  1 2 ,  %cl> + >, 3 7 fza, ?) ( 4 4  
where n,, nb are the number states for the photon fields and 1, 2, 3 refer to the mole- 
cular level occupied. These three states form a complete set of basis states for the 
system. 

The  Schrodinger equation in the interaction picture now becomes 

11$ = KA$ 
where A is the 3 x 3 matrix 

(4.9) 

(4.10) 
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where 
g, = (n,+ 1)1!2K, g b  = (@Of 1)'"Kb. 

The  eigenstates and eigenvalues of the system are obtained from the diagonaliza- 
tion of the matrix A. The  eigenvalues are given by the roots of the cubic equation 

h 3 f ( a w a - ~ w b ) h 2 - h ( g , 2 + g b 2 + i l W , A w b ) $ g , 2 ~ W b - - R b 2 i l w ,  = 0. (4.11) 

The solutions of this equation cannot be expressed in closed form except when 

Aw,+Awb = 0 .  (4.12) 

This occurs for example in the Raman effect for Stokes scattering from a three-level 
molecule. This case has been previously studied (Shimoda 1969, 1970, Walls 1971). 

The condition (4.12) does not generally hold. However for g b  < g, a solution 
may be found correct to first order in g,. This situation occurs for example in an 
experiment where there is a strong pump field applied between levels 1 and 2 and 
a weak signal between levels 2 and 3. If the molecule is initially in state 13) the 
transition probability for the one-quantum transition to state 12) is found to be 

- i(2G2 + Aw,Q) sin GtI2. (4.13) 

The corresponding transition probability for the two-quantum transition to state [ 1 ) 
is 

where 

and 

(4.14) 

(4.15) 

(4.16) 

These results are almost identical to the results obtained by the semiclassical calcu- 
lations of Javan (1957) and Macke et al. (1969). The important difference is the 
(U,+ 1)lI2 and ( a b  + I)'!' factors ing, andg,. The + 1 allows for spontaneous emission 
from levels 3 --f 2 and 2 -+ 1. When the radiation field is treated classically spontaneous 
emission is not included. 

We note that in the presence of a strong pumping field between levels 1 and 2 
the absorption line between levels 2 and 3 appears as a doublet. The  magnitude of 
the splitting of the doublet is 2G. An interference effect between the two components 
of the doublet may be neglected for high saturating power (see Javan 1957). This 
is the effect first observed in the resonant modulation experiment of Autler and Townes 
(1950). The presence of the pumping field gives rise to a modulation of the wave- 
function between the two states 2 and 3 at an angular frequency G. 

The  above results give the effect of the application of the electromagnetic fields 
on the dynamic state of the molecule. The effects of molecular collisions may be 
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superposed on these results (Javan 1957, Macke et al. 1969). The experiments of 
Macke et al. (1969) studying the rotational transitions in sulphur dioxide show a 
satisfactory agreement with theory. 
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